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1 Introduction 

The HawkEar 2.0 is part of a joint project headed by Dr. Lauren Kloepper at St. 

Mary’s College, and Dr. Robert Stevenson at the University of Notre Dame. The goal of 

the project, is to collect information about the echolocation signals of Mexican free-tailed 

bats. These bats come out of caves in swarms of over a million, and must communicate 

with each other to avoid colliding. They do this by transmitting and receiving intense 

(100-120 dB), short (~10 ms), ultrasonic down-sweeps from ~60 kHz to ~20 kHz. Little 

is known, however, about how the signals don’t interfere with each other, and how the 

bats are able to echolocate the others, all while flying at high speeds and densities. 

Furthermore, the bats produce different signals when threatened by a predator to warn 

the others in the colony of the danger. Biologists tentatively suggest that bats produce 

more of a tonal signal for these warning calls, rather than the normal frequency 

downsweep, but that has not been confirmed. Recording the bat calls in different 

contexts will hopefully shed more light on exactly how they communicate and process 

the signals. This unique ability is of interest to the U.S. military, as it could be applied to 

drone swarm technology. 

The HawkEar 2.0 is a continuation of a senior design project from last year, the 

FALCON pack. The data from the bats is captured with microphones, processed, and 

stored onto a microSD card. The signal processing circuitry is strapped to the back of a 

Harris Hawk. The hawk is flown through the swarm of bats, and the equipment records 

the signals of the bats. Last year’s team developed the original idea of two boards, on 

the neck and back of the hawk, to capture the signals of the bats. This project was 
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successful. However, Dr. Kloepper required more data, and better data to be able to 

better understand the bats. This year, our senior design group was tasked with 

redesigning the boards, and providing software upgrades that accomplished these 

objectives. Our redesigned recording system is called the HawkEar 2.0. 

There were two main hardware upgrades which we achieved this year, that gave 

our system greater capabilities, and made it more user friendly than last year’s version. 

One of these was the addition of a second microphone. The addition of the second 

microphone allows the data to be analyzed for directionality of the signals being 

recorded. This makes it easier for Dr. Kloepper to determine which bat signal belongs to 

which bat. To meet this objective, our team added a second microphone to the board on 

the hawk’s head. This meant that we also had to add another filter, amplifier, and other 

associated components to process and store the additional signal. The addition of the 

second signal had implications for the software as well. Since we were using one ADC 

to digitize both signals, the ADC had to sample twice as fast,near the limit of the speed 

at which microSD files could be written.  The memory writing will be explored more in 

depth later in the report. 

The second major upgrade which our team accomplished this year was the 

simplification of the device’s gain control system. When using the device last year, Dr. 

Stevenson needed to change the gain at times in the field. With last year’s technology, 

he had to open up the software, and change gain values in the code each time he 

wanted to do this. There was also an automatic gain control, but Dr. Stevenson found 

that it was not very useful. This year, our team simplified the gain control. We added 
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three binary dip switches. These dip switches could be arranged to activate eight 

different predetermined gain modes. These dip switches were inputs on the 

microcontroller, and they told the microcontroller how to set the output for the gain. This 

design greatly simplified the gain control, and increased ease of use. 

The HawkEar 2.0 met the basic goals that we set this year, however there were a 

few things that we had hoped to achieve that we could not. Dr. Stevenson expressed 

interest in switching our memory storage from an SD card to a flash memory chip that 

could be attached directly to the board. Unfortunately, we were unable to find a chip that 

could hold enough memory while also writing data to memory at the speeds that would 

be required. Another stretch goal that we had set was the addition of a UART transfer 

protocol to transfer the data directly from the board to a laptop without having to remove 

the SD card and insert it into the laptop. We determined that with the data transfer 

speeds of our device, it would take roughly 15 minutes to transfer the data from a 20 

minute flight. This was too long of a wait to implement in the field, so we decided to stick 

with just removing the SD card. These two are issues that could possibly be 

investigated further by a future team. 

2 Detailed System Requirements 

 
● Gain control will be determined by 3 dip switches.  Each dip switch will correspond to a 

single digit on a 3-digit binary number, allowing us to include 8 different gain options. 

This will reduce complexity, and is sufficient for what we are aiming to accomplish. Upon 

a device reset, the device must recheck the dip switches to determine the appropriate 

gain.  
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● In order to solve the sound localization problem a second microphone on the hawk’s 

head will be included. The microphones will be placed as far apart as possible to allow 

the best possible sound localization. Both microphones must sample at at least 200 ksps 

to achieve required Nyquist sampling speeds. They must also be able to pick up 

frequencies in the range of 10-100 kHz, and record at amplitudes up to 120 dB. 

● The device must be able to create, open, and write a new file to memory each recording 

session. The memory writing will be done to a microSD card using SPI. Memory writing 

must occur fast enough to ensure no data loss/corruption. 

● The ADC system must sample at 400 ksps so that each of the two microphones samples 

at the necessary 200 ksps. The ADC must also switch between microphone inputs each 

ADC conversion. 

● The MATLAB program used to analyze the data must be able to split the file data so that 

the left and right microphone data are clearly distinguishable. The program must also 

display a frequency spectrum of the data from the left and right microphones, as well as 

their relative voltage levels, and an audio output of the collected data. 

● The device must be able to retain the majority of the data on the microSD card in the 

even that power is lost in the middle of a recording. 

● The battery must power the device for approximately 45 minutes to an hour. 

● The device weight must be under 50 grams. 

● The device must consist of two seperate boards. One smaller board to be placed on the 

Hawk’s head must contain the microphones. The second board will be placed on the 

hawk’s back, and should contain the larger components such as the dip switches, 

microSD card, and microcontroller. 
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3 Detailed project description 

3.1 System theory of operation  

The user of the HawkEar 2.0 simply attaches the rig onto the hawk’s training 

harness and plugs in the battery. This should cause a red power led to turn on 

indicating that the device is ready to begin audio recording. Next, the user presses a 

button on the board that initiates audio recording. Pressing this button will cause a 

green LED to turn on, to signal that recording has begun. Once that has begun, the two 

microphones will continuously send analog audio data to the two AD8338 amplifiers. 

These amplifiers filter the signal through a bandpass filter between 10-100 kHz. The 

signal is then sent through wires from the neck board to the PIC32 microcontroller, 

which is on the back board. The PIC32 will create a new file on the microSD card and 

convert the microphones’ analog output to digital data by sampling the incoming signal 

at a rate of 400 kHz. This data is then dumped into the newly-created file within the 

microSD card in chunks of 16384 bytes using Serial Peripheral Interface (SPI). After the 

hawk flies through a swarm of bats, it returns to the owner, who presses the record 

button again to stop recording audio. The green LED  blinks, and then turns off to signal 

that recording has ceased and the file has been closed. The microSD card would then 

be ejected from the board and inserted into an external computer for data processing 

and analysis using a MATLAB program which graphs both the frequency response and 

the relative voltage levels of the signals from each microphone. 
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3.2 System Block Diagram - 

The following shows the overall system block diagram and how it is divided into 

subsystems: 

 
Figure 1: System Block Diagram 

 

1. The two microphones pick up the high-frequency signal produced by the bats 

and output an analog signal that is fed into a bandpass filter allowing only 

frequencies between 10 kHz and 100 kHz. The signal then goes into a variable 

gain amplifier (VGA).  

2. The VGA takes in the signal and adjusts its amplitude according to the CVRef 

voltage set by the microcontroller dip-switch-controlled variable gain mechanism.  
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3. The microcontroller samples the analog signal to produce a digital signal with its 

ADC. This signal is then written onto a file created within the microSD card. 

4. The microSD card stores the digital data fed to it by the PIC32, stores it in the 

file, and closes the file when the data collection ends. 

3.3 Detailed Design and Operation of ADC System 

The Analog Digital Conversion (ADC) of our project had to be modified from last 

year to include the second microphone being sampled, while at the same time 

maintaining a sampling speed of 200 ksps per microphone to avoid data loss. For the 

latter problem, we utilized an ADC interrupt which contained a double buffer. Each 

ADC1 buffer contains 8, 32-bit buffers, which allowed us to copy buffer data into a 

global array when an ADC interrupt was fired, while still being able to sample ADC data 

into the other buffer while the interrupt was being serviced. The index of the global array 

was determined by a global index variable, which was incremented after each buffer 

was read into the global array. In order to sample two microphones at the same time, 

we had to increase the sampling frequency to twice the necessary Nyquist frequency, or 

400 ksps. Microphone switching was done on MUX A, utilizing pins RA0 and RA1. The 

switching was done after each ADC sample, meaning that each time an ADC buffer was 

filled it contained alternating data from each microphone. Separation of this data was 

done using simple MATLAB code to break apart the input data array into two smaller 

arrays, each containing data from a single microphone.  

The ADC sample form was set to output a 16-bit integer, but upon testing the 

ADC with the SD card memory writing, we realized that the ADC collection was 
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happening so fast, an ADC output array would get filled up before the SD card writing 

protocol had finished writing the previous array to the SD card. In order to avoid this and 

prevent data losses, we decided to only write 8 bits of each 10-bit ADC sample. This 

allowed us to reformat the ADC output array be an array of 8-bit unsigned chars as 

opposed to 16-bit shorts. By doing this we halved the size of each ADC output array 

which was being written to the SD card, and only lost the 2 least significant bits of each 

sample. In order to capture the 8 most significant bits of a sample, each ADC buffer was 

shifted two bits to the right, so that the 8 MSB’s were located in the first 8 bits of the 

buffer. Therefore, when we copied the ADC buffer into a global array of unsigned chars, 

only the 8 MSB’s are copied and the other 8 bits of the sample are discarded. A 

flowchart of the ADC ISR can be seen in Figure 2. 
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Figure 2: ADC ISR 

 

In order to test the ADC sampling, we had to break its functionality into seperate 

parts and test each individually. In order to test that the microphone switching was 

working, we used a breakout board, and hooked one analog input to ground and the 

other one to a signal generator generating a ramp function from 0 to 1.6 volts. We then 

used the debugger in MPLAB to view the values stored in the ADC array after it had 

been filled. As expected, the values alternated between 0 and and numbers increasing 

from 0 to about 500. This was expected because 1.6V is about half the max input 
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voltage for an ADC sample and 500 is about half of the max value of a 10-bit ADC, 

which is 1023. In order to test that the sampling speed was 400 ksps we used last 

year’s board, and modified the ADC initialization code to make it sample at 400 ksps. 

We then used a GPIO toggle which was fired every ADC interrupt to view how fast the 

ADC was sampling.  Since we used the same exact microcontroller as last year, we 

assumed that sampling speed is the same as the verified speed on last year’s board. 

We were unable to test our current board with the same method because the addition of 

additional pins for the second microphone left us with no unused pins which we could 

define as GPIO toggles.  

 

3.4 Detailed Design and Operation of MicroSD Data Transfer 

The Micro SD data transfer was probably the most difficult part of this project. We 

decided to use SPI because of our familiarity with the system and the fact that SPI was 

already implemented for the transfer protocol on last year’s code. This code, which 

initialized the SD card and handled data transfers was implemented using the FatFS file 

system, developed by ChaN . The implementation of the FatFS module was taken from 1

last year’s code, which utilized code by users ‘Aiden.Morrison’ and ‘rileonar’ on the 

Microchip forums . Initialization of the SD card’s SPI mode can be seen in Figure 3. 2

1 http://elm-chan.org/docs/mmc/mmc_e.html 
  http://elm-chan.org/fsw/ff/00index_e.html 
 
2 http://www.microchip.com/forums/m563218.aspx 

http://elm-chan.org/docs/mmc/mmc_e.html
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Figure 3: SD Card SPI Initialization 

 

 The basic operation of the file writing code involved creating/reading a file called 

FILESET.DEX, which contained an array of numbers which was incremented after each 

new file was created. This allowed us to name each new memory file with a number that 

made it easy to distinguish which file any given data collection cycle corresponded to. 

After the appropriate index was determined from FILESET.DEX, a new .DAT file was 
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created with that index number, and subsequent memory writes were directed at a 

pointer to that file. Each memory write occured after 16384, 8-bit entries were placed in 

the global ADC array. While this block of data was being written, ADC collection was 

switched to a second global array to ensure there was no data loss during an SD card 

write. After recording is finished we close out our file and wait to begin writing a new file. 

As stated in Section 3.3, we encountered problems with the speed at which data 

writing occured. Initially, we tried to rework the underlying FatFS code to speed up data 

transfer but this was unsuccessful. In the end, we decided that we would only write 

8-bits to each ADC array entry instead of 16, and this therefore halved the size of each 

file we wrote, which made up for the fact that we had doubled the sampling frequency 

from last year’s project. We also utilized a f_sync() command to avoid losing data in the 

case of the system losing power during a recording session. This command performs 

the same commands that occur when the file is closed, but without actually closing the 

file. Having this command occur after each data write ensures that a loss of power will 

only result in at most 16384 ADC results being lost.  

Testing for the memory writing system involved hooking up MOSI and MISO pins 

to a logic analyzer. When we initially tried to write 16-bit results while sampling at 400 

ksps, we found that there was no gap in between blocks of memory being written. This 

meant that an f_write() command was beginning to write a block of memory before the 

previous block had finished writing, causing data losses. After we switched to 8-bit ADC 

results, we found that there was a gap between block writes, indicating that the memory 

writing was occuring at an acceptable speed relative to the sampling frequency.  
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3.5 Operation of Gain Control 

In the first version of the project it was required to reprogram the microcontroller 

every time they needed to change the gain. The research team was in the middle of the 

New Mexican desert, about an hour from where they were staying. The environment 

was very detrimental to both coding and taking the device off the hawk. Due to these 

difficulties that came from the environment Professor Stevenson requested the ability to 

manually change the gain of the amplifier in the field without having to reprogram the 

device. We set up the specifications for the gain control based on 8 predetermined 

gains that are controlled by 3 seperate dip switches.  

The 3 switches are designed by using the internal pull-up resistors of the 

microcontroller. When the switches are closed the voltage goes to ground and a 0 is 

read. When the switches are open the internal pullup resistor causes the voltage to be 

read as a 1. These combinations of 0’s and 1’s make up the 8 combinations of gains. 

The microcontroller reads the three inputs and outputs to the reference voltage of the 

microcontroller. The amplifier takes these different input voltages and the 

amplification/gain changes based on it. The software is primarily driven by setting input 

and outputs of ports/tris as well as using if statements. This can be seen in the block 

diagram Figure 4. 
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Figure 4: Gain Control Subsystem Block Diagram 

 

The 8 gains that are being used are 5.6, 11.2, 13.6, 21.6, 32.8, 44, 55.2, and 

65.6. In order to test this subsystem independently of the others, I used a breadboard 

as well as the kit pic 270 board. The breadboard had the ground connections to one 

side of the dip switches. The other end of the dip switches were connected directly into 

input ports. In order to test if the software was working I would measure the CVref 
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output on the pic and see if the voltage would change when I changed the dip switch 

combination.  

 

3.6 Operation of Microphone 

We are using Knowles Sisonic MEMS microphones for our audio design. These 

have a flat frequency response that is within the 10 to 100 KHz range that is necessary 

to capture the bats signals. We connect this to a capacitor in order to create a passive 

filter. We use two separate microphones, separated as far as possible on the neck 

board to capture audio signals. The microphones are AC coupled with amplifiers which 

has an input voltage from our manual gain control. The capacitors have a bandpass 

filter that is within the 10 to 100 KHz range that was previously mentioned. Class I 

capacitors were used so that they could compat any sound waves that the capacitors 

would emit. Figure 5 is the interface that the circuit and the microphones had.  

 

 

Figure 5: Microphone Interface  
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Bats typically produce frequencies between 15 and 60 KHz. They can produce 

frequencies higher than this though, which is why we needed a band pass filter from 10 

to 100 KHz. The frequency response of the microphone, seen in Figure 6, shows that 

the microphone has no gain below 10 KHz which means it will not pick up sounds that 

humans are the source of.  

 

Figure 6: Microphone Frequency Response 

We tested our system using a chirp generator that allowed us to generate known 

frequencies and measure them using our system. We could then plot the data to 

MatLab and see the various voltage levels and fourier transforms of the frequencies.  

 

3.7 Interfaces 

The following is a block diagram demonstrating the interface between the various 
subsystems: 
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Figure 7: Overall System Interface Diagram 

 

4 System Integration Testing 

Since our project only accomplishes a singular task, writing to SD memory, we 

only had to demonstrate that functionality to prove that the whole system worked. By 

successfully writing a file to memory which was the appropriate size for the duration of 

the recording, we could demonstrate that ADC collection worked at 400 ksps. Further, 

by running this data through MATLAB and seeing what we would expect for the 

specified input frequency and gain, we could confirm that the gain control and memory 

writing also functioned properly. 
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5 Users Manual/Installation manual  

5.1 Setup & Installation  

HawkEar 2.0 consists of two boards and a series of wires connecting the two. As 

shown in Figure 1, the larger of the two boards is the “Back Board” and contains 

the parts that make up the physical user interface, such as dip switches, SD 

card, power and record button, etc. The smaller of the boards is the “Neck 

Board”, shown in Figure 2, and contains the microphones, amplifiers, and other 

parts responsible for recording the bats. Both boards should be attached to the 

falcon’s training harness with a custom-made case. The Back board should then 

be placed on the falcon’s back, and the Neck Board on the top of the falcon’s 

head alongside the camera module. Before any recordings can be made, the 

micro SD card must be inserted into the SD card slot on the Back Board. 

 

 
Figure 8: Neck Board 
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Figure 9: Back Board 

 

Audio Data Collection System: 

Operating HawkEar 2.0 to collect audio data the field can be done by following 

the step-by-step instructions below:  

1. Power up HawkEar 2.0 by connecting a lithium-polymer battery to the red 

& black connector on the larger Back Board. The battery should be rated 

between 3.3V and 10V. Once power is supplied to the boards, a single red 

LED labelled “POWER” will light up on the back board. 

2. Insert microSD card into the SD card slot before beginning data collection. 

3. Use the 3 dip switches to set the desired gain before attempting data 

collection. The switches allow for 8 different gain levels, which can be 

attained with the switch configurations listed in Table 1 below. 

4. If the falcon and user are ready for data collection, the user must press the 

button labelled “START/STOP RECORDING” on the Back Board, which 

will light up a green LED adjacent to the button.  
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5. Once done with the recording session, the user should press the same 

START/STOP RECORDING button to cease audio recording. The 

adjacent LED should blink, then  turn off, but the POWER LED should stay 

lit. 

6. Data is done writing and the file is ready for viewing in MATLAB. 

File & Data Viewing: 

1. Copy the data file into the same folder as the Matlab script 

“readSoundData.m”.  

2. Open “readSoundData.m”. 

3. Change the variables at the top of the readSoundData.m file in order for 

the program to read the data file. 

4. Type a desired name for the .wav file to be outputted 

5. Run the Matlab Script. 

6. The .wav file of the data is created. 

 
Note: If no edits to the .wav file are desired, change the “makeWaveFile” to equal 0. If 

the user doesn’t want the graphical waveforms and fast Fourier transform to be 

outputted, change makePlots to equal 0. If the user would like to adjust the sample 

numbers where the sync markers were made, they can adjust the “markerPoints” 

variable. The raw and corrected data along with the voltage and normalized data arrays 

are shown in the column vectors. 

 
Note: If the user would like to reset the device, they can press the “RESET” button at 
any time.  
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Figure 10: Battery Connected to HawkEar2.0 

 
 

 
Table 1: Three Dip Switches outputting 8 Gain and CVR Levels 

 

5.2 Verifying Operation 

Once the battery is connected to HawkEar 2.0 a red LED labelled “POWER” should turn 

on and stay lit while the battery is connected. After the user starts a recording session a 

green LED next to the “START/STOP RECORDING button should turn on and stay lit 
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until the button is pressed again. If the device has responded to these inputs, it should 

be ready for use.  

 

5.3 Troubleshooting 

If the device does not power on: 

1. Ensure that the battery is fully charged and fully inserted into the power adaptor 

2. Check that the wires connecting the battery to the board are properly soldered 

 

If the recording LED quickly turns off after the start of a recording session 

1. Unplug the battery to cycle power 

2. Remove and reinsert the SD card, ensuring that it is fully inserted into the holder 

3. Reinsert battery 

For further questions, email: sblanch2@alumni.nd.edu 

 

6 To-Market Design Changes  

 
While we accomplished most of the goals for our final product, there are changes 

that we would implement, if we had the time, before taking the device to market. The 

PIC32 microcontroller that we used, had every single IO pin utilized by our project. If we 

had used a larger microcontroller, with more IO pins, we could have possibly 

accomplished some of our stretch goals, such as UART data transfer. Using a 

two-channel amplifier on the neck board, rather than 2 one-channel amplifiers, would 

have reduced the number of components necessary for the neck board. That in turn 
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would have reduced the weight of the neck board, as well as the size. The other to 

market change we would make would be attaching some sort of SD Card holder that 

can lock the card in, so that there is no chance of it falling out while in use. 

7 Conclusions  

This project challenged the abilities of our team members to their limits. Almost 

none of what we had to accomplish had been taught to us in any of our courses, so 

much of the work, especially early in the semester, was just doing research on the 

datasheets of various parts. We essentially figured out how to finish this project using 

the internet. Working under a professor who actually is going to use our product in 

field-testing provided a level of seriousness that does not normally accompany 

undergrad assignments. This also meant that we had to learn to stay in communication 

with each other as well as all the stakeholders in this project. This project provided a 

great learning opportunity for the team which I think will help prepare us to become 

engineers in the real world. 

8 Appendices  

8.1 Parts List  
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8.2 Hardware  

 

 
 

Figure 11: Neck Board schematic 

 
Figure 12: Neck Board Layout 



26 

 
 

 
 

 
Figure 13: Back Board Schematic 

 

 
Figure 14: Back Board Layout 
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8.3 Software List  

● readSoundData.m - Matlab program used to analyze the audio data collected. 

Takes in the files from the SD card and outputs the graphical waveform, Fourier 

Transform, and a .wav file of the signal recorded. 

● Hawk2.X - MPLAB project containing the source files that program the PIC. 

● Head Board Res2.sch - EAGLE schematic file for the head board. 

● Head Board Res2.brd - EAGLE board file for the head board. 

● Back Board Res2.sch - EAGLE schematic file for the back board. 

● Back Board Res2.brd - EAGLE board file for the back board 

 


