

HawkEar 2.0

Sam Blanchet, John Hatfield, Dimitri Wolff, Jack Myers

1

Table of Contents:

1. Introduction 2

2. Detailed System Requirements 4

3. Detailed Project Requirements 6

a. System Theory of Operation 6

b. System Block Diagram 7

c. Detailed Design and Operation of ADC System 8

d. Detailed Design and Operation of MicroSD Data Transfer 11

e. Detailed Design and Operation of Gain Control 14

f. Detailed Design and Operation of Microphone 16

g. Interfaces 18

4. System Integration Testing 18

5. User Manual 19

a. Setup and Installation 19

b. Verifying Operation 22

c. Troubleshooting 23

6. To-Market Changes 23

7. Conclusions 24

8. Appendices 24

a. Parts List 24

b. Hardware Schematics 25

c. Software Lists 27

2

1 Introduction

The HawkEar 2.0 is part of a joint project headed by Dr. Lauren Kloepper at St.

Mary’s College, and Dr. Robert Stevenson at the University of Notre Dame. The goal of

the project, is to collect information about the echolocation signals of Mexican free-tailed

bats. These bats come out of caves in swarms of over a million, and must communicate

with each other to avoid colliding. They do this by transmitting and receiving intense

(100-120 dB), short (~10 ms), ultrasonic down-sweeps from ~60 kHz to ~20 kHz. Little

is known, however, about how the signals don’t interfere with each other, and how the

bats are able to echolocate the others, all while flying at high speeds and densities.

Furthermore, the bats produce different signals when threatened by a predator to warn

the others in the colony of the danger. Biologists tentatively suggest that bats produce

more of a tonal signal for these warning calls, rather than the normal frequency

downsweep, but that has not been confirmed. Recording the bat calls in different

contexts will hopefully shed more light on exactly how they communicate and process

the signals. This unique ability is of interest to the U.S. military, as it could be applied to

drone swarm technology.

The HawkEar 2.0 is a continuation of a senior design project from last year, the

FALCON pack. The data from the bats is captured with microphones, processed, and

stored onto a microSD card. The signal processing circuitry is strapped to the back of a

Harris Hawk. The hawk is flown through the swarm of bats, and the equipment records

the signals of the bats. Last year’s team developed the original idea of two boards, on

the neck and back of the hawk, to capture the signals of the bats. This project was

3

successful. However, Dr. Kloepper required more data, and better data to be able to

better understand the bats. This year, our senior design group was tasked with

redesigning the boards, and providing software upgrades that accomplished these

objectives. Our redesigned recording system is called the HawkEar 2.0.

There were two main hardware upgrades which we achieved this year, that gave

our system greater capabilities, and made it more user friendly than last year’s version.

One of these was the addition of a second microphone. The addition of the second

microphone allows the data to be analyzed for directionality of the signals being

recorded. This makes it easier for Dr. Kloepper to determine which bat signal belongs to

which bat. To meet this objective, our team added a second microphone to the board on

the hawk’s head. This meant that we also had to add another filter, amplifier, and other

associated components to process and store the additional signal. The addition of the

second signal had implications for the software as well. Since we were using one ADC

to digitize both signals, the ADC had to sample twice as fast,near the limit of the speed

at which microSD files could be written. The memory writing will be explored more in

depth later in the report.

The second major upgrade which our team accomplished this year was the

simplification of the device’s gain control system. When using the device last year, Dr.

Stevenson needed to change the gain at times in the field. With last year’s technology,

he had to open up the software, and change gain values in the code each time he

wanted to do this. There was also an automatic gain control, but Dr. Stevenson found

that it was not very useful. This year, our team simplified the gain control. We added

4

three binary dip switches. These dip switches could be arranged to activate eight

different predetermined gain modes. These dip switches were inputs on the

microcontroller, and they told the microcontroller how to set the output for the gain. This

design greatly simplified the gain control, and increased ease of use.

The HawkEar 2.0 met the basic goals that we set this year, however there were a

few things that we had hoped to achieve that we could not. Dr. Stevenson expressed

interest in switching our memory storage from an SD card to a flash memory chip that

could be attached directly to the board. Unfortunately, we were unable to find a chip that

could hold enough memory while also writing data to memory at the speeds that would

be required. Another stretch goal that we had set was the addition of a UART transfer

protocol to transfer the data directly from the board to a laptop without having to remove

the SD card and insert it into the laptop. We determined that with the data transfer

speeds of our device, it would take roughly 15 minutes to transfer the data from a 20

minute flight. This was too long of a wait to implement in the field, so we decided to stick

with just removing the SD card. These two are issues that could possibly be

investigated further by a future team.

2 Detailed System Requirements

● Gain control will be determined by 3 dip switches. Each dip switch will correspond to a

single digit on a 3-digit binary number, allowing us to include 8 different gain options.

This will reduce complexity, and is sufficient for what we are aiming to accomplish. Upon

a device reset, the device must recheck the dip switches to determine the appropriate

gain.

5

● In order to solve the sound localization problem a second microphone on the hawk’s

head will be included. The microphones will be placed as far apart as possible to allow

the best possible sound localization. Both microphones must sample at at least 200 ksps

to achieve required Nyquist sampling speeds. They must also be able to pick up

frequencies in the range of 10-100 kHz, and record at amplitudes up to 120 dB.

● The device must be able to create, open, and write a new file to memory each recording

session. The memory writing will be done to a microSD card using SPI. Memory writing

must occur fast enough to ensure no data loss/corruption.

● The ADC system must sample at 400 ksps so that each of the two microphones samples

at the necessary 200 ksps. The ADC must also switch between microphone inputs each

ADC conversion.

● The MATLAB program used to analyze the data must be able to split the file data so that

the left and right microphone data are clearly distinguishable. The program must also

display a frequency spectrum of the data from the left and right microphones, as well as

their relative voltage levels, and an audio output of the collected data.

● The device must be able to retain the majority of the data on the microSD card in the

even that power is lost in the middle of a recording.

● The battery must power the device for approximately 45 minutes to an hour.

● The device weight must be under 50 grams.

● The device must consist of two seperate boards. One smaller board to be placed on the

Hawk’s head must contain the microphones. The second board will be placed on the

hawk’s back, and should contain the larger components such as the dip switches,

microSD card, and microcontroller.

6

3 Detailed project description

3.1 System theory of operation

The user of the HawkEar 2.0 simply attaches the rig onto the hawk’s training

harness and plugs in the battery. This should cause a red power led to turn on

indicating that the device is ready to begin audio recording. Next, the user presses a

button on the board that initiates audio recording. Pressing this button will cause a

green LED to turn on, to signal that recording has begun. Once that has begun, the two

microphones will continuously send analog audio data to the two AD8338 amplifiers.

These amplifiers filter the signal through a bandpass filter between 10-100 kHz. The

signal is then sent through wires from the neck board to the PIC32 microcontroller,

which is on the back board. The PIC32 will create a new file on the microSD card and

convert the microphones’ analog output to digital data by sampling the incoming signal

at a rate of 400 kHz. This data is then dumped into the newly-created file within the

microSD card in chunks of 16384 bytes using Serial Peripheral Interface (SPI). After the

hawk flies through a swarm of bats, it returns to the owner, who presses the record

button again to stop recording audio. The green LED blinks, and then turns off to signal

that recording has ceased and the file has been closed. The microSD card would then

be ejected from the board and inserted into an external computer for data processing

and analysis using a MATLAB program which graphs both the frequency response and

the relative voltage levels of the signals from each microphone.

7

3.2 System Block Diagram -

The following shows the overall system block diagram and how it is divided into

subsystems:

Figure 1: System Block Diagram

1. The two microphones pick up the high-frequency signal produced by the bats

and output an analog signal that is fed into a bandpass filter allowing only

frequencies between 10 kHz and 100 kHz. The signal then goes into a variable

gain amplifier (VGA).

2. The VGA takes in the signal and adjusts its amplitude according to the CVRef

voltage set by the microcontroller dip-switch-controlled variable gain mechanism.

8

3. The microcontroller samples the analog signal to produce a digital signal with its

ADC. This signal is then written onto a file created within the microSD card.

4. The microSD card stores the digital data fed to it by the PIC32, stores it in the

file, and closes the file when the data collection ends.

3.3 Detailed Design and Operation of ADC System

The Analog Digital Conversion (ADC) of our project had to be modified from last

year to include the second microphone being sampled, while at the same time

maintaining a sampling speed of 200 ksps per microphone to avoid data loss. For the

latter problem, we utilized an ADC interrupt which contained a double buffer. Each

ADC1 buffer contains 8, 32-bit buffers, which allowed us to copy buffer data into a

global array when an ADC interrupt was fired, while still being able to sample ADC data

into the other buffer while the interrupt was being serviced. The index of the global array

was determined by a global index variable, which was incremented after each buffer

was read into the global array. In order to sample two microphones at the same time,

we had to increase the sampling frequency to twice the necessary Nyquist frequency, or

400 ksps. Microphone switching was done on MUX A, utilizing pins RA0 and RA1. The

switching was done after each ADC sample, meaning that each time an ADC buffer was

filled it contained alternating data from each microphone. Separation of this data was

done using simple MATLAB code to break apart the input data array into two smaller

arrays, each containing data from a single microphone.

The ADC sample form was set to output a 16-bit integer, but upon testing the

ADC with the SD card memory writing, we realized that the ADC collection was

9

happening so fast, an ADC output array would get filled up before the SD card writing

protocol had finished writing the previous array to the SD card. In order to avoid this and

prevent data losses, we decided to only write 8 bits of each 10-bit ADC sample. This

allowed us to reformat the ADC output array be an array of 8-bit unsigned chars as

opposed to 16-bit shorts. By doing this we halved the size of each ADC output array

which was being written to the SD card, and only lost the 2 least significant bits of each

sample. In order to capture the 8 most significant bits of a sample, each ADC buffer was

shifted two bits to the right, so that the 8 MSB’s were located in the first 8 bits of the

buffer. Therefore, when we copied the ADC buffer into a global array of unsigned chars,

only the 8 MSB’s are copied and the other 8 bits of the sample are discarded. A

flowchart of the ADC ISR can be seen in Figure 2.

10

Figure 2: ADC ISR

In order to test the ADC sampling, we had to break its functionality into seperate

parts and test each individually. In order to test that the microphone switching was

working, we used a breakout board, and hooked one analog input to ground and the

other one to a signal generator generating a ramp function from 0 to 1.6 volts. We then

used the debugger in MPLAB to view the values stored in the ADC array after it had

been filled. As expected, the values alternated between 0 and and numbers increasing

from 0 to about 500. This was expected because 1.6V is about half the max input

11

voltage for an ADC sample and 500 is about half of the max value of a 10-bit ADC,

which is 1023. In order to test that the sampling speed was 400 ksps we used last

year’s board, and modified the ADC initialization code to make it sample at 400 ksps.

We then used a GPIO toggle which was fired every ADC interrupt to view how fast the

ADC was sampling. Since we used the same exact microcontroller as last year, we

assumed that sampling speed is the same as the verified speed on last year’s board.

We were unable to test our current board with the same method because the addition of

additional pins for the second microphone left us with no unused pins which we could

define as GPIO toggles.

3.4 Detailed Design and Operation of MicroSD Data Transfer

The Micro SD data transfer was probably the most difficult part of this project. We

decided to use SPI because of our familiarity with the system and the fact that SPI was

already implemented for the transfer protocol on last year’s code. This code, which

initialized the SD card and handled data transfers was implemented using the FatFS file

system, developed by ChaN . The implementation of the FatFS module was taken from 1

last year’s code, which utilized code by users ‘Aiden.Morrison’ and ‘rileonar’ on the

Microchip forums . Initialization of the SD card’s SPI mode can be seen in Figure 3. 2

1 http://elm-chan.org/docs/mmc/mmc_e.html
 http://elm-chan.org/fsw/ff/00index_e.html

2 http://www.microchip.com/forums/m563218.aspx

http://elm-chan.org/docs/mmc/mmc_e.html

12

Figure 3: SD Card SPI Initialization

 The basic operation of the file writing code involved creating/reading a file called

FILESET.DEX, which contained an array of numbers which was incremented after each

new file was created. This allowed us to name each new memory file with a number that

made it easy to distinguish which file any given data collection cycle corresponded to.

After the appropriate index was determined from FILESET.DEX, a new .DAT file was

13

created with that index number, and subsequent memory writes were directed at a

pointer to that file. Each memory write occured after 16384, 8-bit entries were placed in

the global ADC array. While this block of data was being written, ADC collection was

switched to a second global array to ensure there was no data loss during an SD card

write. After recording is finished we close out our file and wait to begin writing a new file.

As stated in Section 3.3, we encountered problems with the speed at which data

writing occured. Initially, we tried to rework the underlying FatFS code to speed up data

transfer but this was unsuccessful. In the end, we decided that we would only write

8-bits to each ADC array entry instead of 16, and this therefore halved the size of each

file we wrote, which made up for the fact that we had doubled the sampling frequency

from last year’s project. We also utilized a f_sync() command to avoid losing data in the

case of the system losing power during a recording session. This command performs

the same commands that occur when the file is closed, but without actually closing the

file. Having this command occur after each data write ensures that a loss of power will

only result in at most 16384 ADC results being lost.

Testing for the memory writing system involved hooking up MOSI and MISO pins

to a logic analyzer. When we initially tried to write 16-bit results while sampling at 400

ksps, we found that there was no gap in between blocks of memory being written. This

meant that an f_write() command was beginning to write a block of memory before the

previous block had finished writing, causing data losses. After we switched to 8-bit ADC

results, we found that there was a gap between block writes, indicating that the memory

writing was occuring at an acceptable speed relative to the sampling frequency.

14

3.5 Operation of Gain Control

In the first version of the project it was required to reprogram the microcontroller

every time they needed to change the gain. The research team was in the middle of the

New Mexican desert, about an hour from where they were staying. The environment

was very detrimental to both coding and taking the device off the hawk. Due to these

difficulties that came from the environment Professor Stevenson requested the ability to

manually change the gain of the amplifier in the field without having to reprogram the

device. We set up the specifications for the gain control based on 8 predetermined

gains that are controlled by 3 seperate dip switches.

The 3 switches are designed by using the internal pull-up resistors of the

microcontroller. When the switches are closed the voltage goes to ground and a 0 is

read. When the switches are open the internal pullup resistor causes the voltage to be

read as a 1. These combinations of 0’s and 1’s make up the 8 combinations of gains.

The microcontroller reads the three inputs and outputs to the reference voltage of the

microcontroller. The amplifier takes these different input voltages and the

amplification/gain changes based on it. The software is primarily driven by setting input

and outputs of ports/tris as well as using if statements. This can be seen in the block

diagram Figure 4.

15

Figure 4: Gain Control Subsystem Block Diagram

The 8 gains that are being used are 5.6, 11.2, 13.6, 21.6, 32.8, 44, 55.2, and

65.6. In order to test this subsystem independently of the others, I used a breadboard

as well as the kit pic 270 board. The breadboard had the ground connections to one

side of the dip switches. The other end of the dip switches were connected directly into

input ports. In order to test if the software was working I would measure the CVref

16

output on the pic and see if the voltage would change when I changed the dip switch

combination.

3.6 Operation of Microphone

We are using Knowles Sisonic MEMS microphones for our audio design. These

have a flat frequency response that is within the 10 to 100 KHz range that is necessary

to capture the bats signals. We connect this to a capacitor in order to create a passive

filter. We use two separate microphones, separated as far as possible on the neck

board to capture audio signals. The microphones are AC coupled with amplifiers which

has an input voltage from our manual gain control. The capacitors have a bandpass

filter that is within the 10 to 100 KHz range that was previously mentioned. Class I

capacitors were used so that they could compat any sound waves that the capacitors

would emit. Figure 5 is the interface that the circuit and the microphones had.

Figure 5: Microphone Interface

17

Bats typically produce frequencies between 15 and 60 KHz. They can produce

frequencies higher than this though, which is why we needed a band pass filter from 10

to 100 KHz. The frequency response of the microphone, seen in Figure 6, shows that

the microphone has no gain below 10 KHz which means it will not pick up sounds that

humans are the source of.

Figure 6: Microphone Frequency Response

We tested our system using a chirp generator that allowed us to generate known

frequencies and measure them using our system. We could then plot the data to

MatLab and see the various voltage levels and fourier transforms of the frequencies.

3.7 Interfaces

The following is a block diagram demonstrating the interface between the various
subsystems:

18

Figure 7: Overall System Interface Diagram

4 System Integration Testing

Since our project only accomplishes a singular task, writing to SD memory, we

only had to demonstrate that functionality to prove that the whole system worked. By

successfully writing a file to memory which was the appropriate size for the duration of

the recording, we could demonstrate that ADC collection worked at 400 ksps. Further,

by running this data through MATLAB and seeing what we would expect for the

specified input frequency and gain, we could confirm that the gain control and memory

writing also functioned properly.

19

5 Users Manual/Installation manual

5.1 Setup & Installation

HawkEar 2.0 consists of two boards and a series of wires connecting the two. As

shown in Figure 1, the larger of the two boards is the “Back Board” and contains

the parts that make up the physical user interface, such as dip switches, SD

card, power and record button, etc. The smaller of the boards is the “Neck

Board”, shown in Figure 2, and contains the microphones, amplifiers, and other

parts responsible for recording the bats. Both boards should be attached to the

falcon’s training harness with a custom-made case. The Back board should then

be placed on the falcon’s back, and the Neck Board on the top of the falcon’s

head alongside the camera module. Before any recordings can be made, the

micro SD card must be inserted into the SD card slot on the Back Board.

Figure 8: Neck Board

20

Figure 9: Back Board

Audio Data Collection System:

Operating HawkEar 2.0 to collect audio data the field can be done by following

the step-by-step instructions below:

1. Power up HawkEar 2.0 by connecting a lithium-polymer battery to the red

& black connector on the larger Back Board. The battery should be rated

between 3.3V and 10V. Once power is supplied to the boards, a single red

LED labelled “POWER” will light up on the back board.

2. Insert microSD card into the SD card slot before beginning data collection.

3. Use the 3 dip switches to set the desired gain before attempting data

collection. The switches allow for 8 different gain levels, which can be

attained with the switch configurations listed in Table 1 below.

4. If the falcon and user are ready for data collection, the user must press the

button labelled “START/STOP RECORDING” on the Back Board, which

will light up a green LED adjacent to the button.

21

5. Once done with the recording session, the user should press the same

START/STOP RECORDING button to cease audio recording. The

adjacent LED should blink, then turn off, but the POWER LED should stay

lit.

6. Data is done writing and the file is ready for viewing in MATLAB.

File & Data Viewing:

1. Copy the data file into the same folder as the Matlab script

“readSoundData.m”.

2. Open “readSoundData.m”.

3. Change the variables at the top of the readSoundData.m file in order for

the program to read the data file.

4. Type a desired name for the .wav file to be outputted

5. Run the Matlab Script.

6. The .wav file of the data is created.

Note: If no edits to the .wav file are desired, change the “makeWaveFile” to equal 0. If

the user doesn’t want the graphical waveforms and fast Fourier transform to be

outputted, change makePlots to equal 0. If the user would like to adjust the sample

numbers where the sync markers were made, they can adjust the “markerPoints”

variable. The raw and corrected data along with the voltage and normalized data arrays

are shown in the column vectors.

Note: If the user would like to reset the device, they can press the “RESET” button at
any time.

22

Figure 10: Battery Connected to HawkEar2.0

Table 1: Three Dip Switches outputting 8 Gain and CVR Levels

5.2 Verifying Operation

Once the battery is connected to HawkEar 2.0 a red LED labelled “POWER” should turn

on and stay lit while the battery is connected. After the user starts a recording session a

green LED next to the “START/STOP RECORDING button should turn on and stay lit

23

until the button is pressed again. If the device has responded to these inputs, it should

be ready for use.

5.3 Troubleshooting

If the device does not power on:

1. Ensure that the battery is fully charged and fully inserted into the power adaptor

2. Check that the wires connecting the battery to the board are properly soldered

If the recording LED quickly turns off after the start of a recording session

1. Unplug the battery to cycle power

2. Remove and reinsert the SD card, ensuring that it is fully inserted into the holder

3. Reinsert battery

For further questions, email: sblanch2@alumni.nd.edu

6 To-Market Design Changes

While we accomplished most of the goals for our final product, there are changes

that we would implement, if we had the time, before taking the device to market. The

PIC32 microcontroller that we used, had every single IO pin utilized by our project. If we

had used a larger microcontroller, with more IO pins, we could have possibly

accomplished some of our stretch goals, such as UART data transfer. Using a

two-channel amplifier on the neck board, rather than 2 one-channel amplifiers, would

have reduced the number of components necessary for the neck board. That in turn

24

would have reduced the weight of the neck board, as well as the size. The other to

market change we would make would be attaching some sort of SD Card holder that

can lock the card in, so that there is no chance of it falling out while in use.

7 Conclusions

This project challenged the abilities of our team members to their limits. Almost

none of what we had to accomplish had been taught to us in any of our courses, so

much of the work, especially early in the semester, was just doing research on the

datasheets of various parts. We essentially figured out how to finish this project using

the internet. Working under a professor who actually is going to use our product in

field-testing provided a level of seriousness that does not normally accompany

undergrad assignments. This also meant that we had to learn to stay in communication

with each other as well as all the stakeholders in this project. This project provided a

great learning opportunity for the team which I think will help prepare us to become

engineers in the real world.

8 Appendices

8.1 Parts List

25

8.2 Hardware

Figure 11: Neck Board schematic

Figure 12: Neck Board Layout

26

Figure 13: Back Board Schematic

Figure 14: Back Board Layout

27

8.3 Software List

● readSoundData.m - Matlab program used to analyze the audio data collected.

Takes in the files from the SD card and outputs the graphical waveform, Fourier

Transform, and a .wav file of the signal recorded.

● Hawk2.X - MPLAB project containing the source files that program the PIC.

● Head Board Res2.sch - EAGLE schematic file for the head board.

● Head Board Res2.brd - EAGLE board file for the head board.

● Back Board Res2.sch - EAGLE schematic file for the back board.

● Back Board Res2.brd - EAGLE board file for the back board

